December 4 2021
12:11 AM
banner-icon1 banner-icon2 banner-icon3



Indiana health officials announce COVID-19 testing expansion

Story by APNEWS

Story   Source

Published on September 13, 2021 10:17 AM
INDIANAPOLIS (AP) — Indiana will increase free COVID-19 testing across the state through a partnership with Gravity Diagnostics.

Under the partnership, the Kentucky-based company will provide staff and supplies needed to collect and analyze up to 5,000 COVID-19 tests per day, including rapid antigen and PCR tests, the state health department said.

The testing operation is expected to come together in a matter of weeks and have the ability to expand to up to 45 sites, if needed.

The new partnership will allow the state to offer testing in communities with higher need for longer periods, State Health Commissioner Dr. Kristina Box said in a statement Friday. That will allow mobile units to continue to host shorter testing and vaccination clinics in other areas of the state, she added.

Testing sites will remain at designated locations for fixed periods of time to increase the availability of testing in communities that...


COVID-19 testing

COVID-19 testing involves analyzing samples to assess the current or past presence of SARS-CoV-2. The two main branches detect either the presence of the virus or of antibodies produced in response to infection. Molecular tests for viral presence through its molecular components are used to diagnose individual cases and to allow public health authorities to trace and contain outbreaks. Antibody tests instead show whether someone once had the disease. They are less useful for diagnosing current infections because antibodies may not develop for weeks after infection. It is used to assess disease prevalence, which aids the estimation of the infection fatality rate.

Individual jurisdictions have adopted varied testing protocols, including whom to test, how often to test, analysis protocols, sample collection and the uses of test results. This variation has likely significantly impacted reported statistics, including case and test numbers, case fatality rates and case demographics. Because SARS-CoV-2 transmission occurs days after exposure there is an urgent need for frequent surveillance and rapid availability of results.

Test analysis is often performed in automated, high-throughput, medical laboratories by medical laboratory scientists. Alternatively, point-of-care testing can be done in physician's offices and parking lots, workplaces, institutional settings or transit hubs.


Positive viral tests indicate a current infection, while positive antibody tests indicate a prior infection. Other techniques include a CT scan, checking for elevated body temperature, checking for low blood oxygen level, and the deployment of detection dogs at airports.

Detection of the virus

Detection of the virus is usually done either by looking for the virus' inner RNA, or pieces of protein on the outside of the virus. Tests that look for the viral antigens are called antigen tests.

There are multiple types of tests that look for the virus by detecting the presence of the virus's RNA. These are called molecular tests, after molecular biology. As of 2021, the most common form of molecular test is the reverse transcription polymerase chain reaction test. Other methods used in molecular tests include CRISPR, isothermal nucleic acid amplification, digital polymerase chain reaction, microarray analysis, and next-generation sequencing.

Reverse transcription polymerase chain reaction test

Polymerase chain reaction is a process that amplifies a small, well-defined segment of DNA many hundreds of thousands of times, creating enough of it for analysis. Test samples are treated with certain chemicals that allow DNA to be extracted. Reverse transcription converts RNA into DNA. Reverse transcription polymerase chain reaction first uses reverse transcription to obtain DNA, followed by PCR to amplify that DNA, creating enough to be analyzed. RT-PCR can thereby detect SARS-CoV-2, which contains only RNA. The RT-PCR process generally requires a few hours. These tests are also referred to as molecular or genetic assays.

Real-time PCR provides advantages including automation, higher-throughput and more reliable instrumentation. It has become the preferred method.

The combined technique has been described as real-time RT-PCR or quantitative RT-PCR and is sometimes abbreviated qRT-PCR, rRT-PCR or RT-qPCR, although sometimes RT-PCR or PCR are used. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines propose the term RT-qPCR, but not all authors adhere to this.

Average sensitivity for rapid molecular tests depend on the brand. For ID NOW, the average sensitivity was 73.0% with an average specificity of 99.7%; for Xpert Xpress the average sensitivity was 100% with an average specificity of 97.2%. The term sensitivity refers to the capacity of a test to identify all infected people, while specificity is the ability of a test to detect a particular virus.

Samples can be obtained by various methods, including a nasopharyngeal swab, sputum , throat swabs, deep airway material collected via suction catheter or saliva. Drosten et al. remarked that for 2003 SARS, 'from a diagnostic point of view, it is important to note that nasal and throat swabs seem less suitable for diagnosis, since these materials contain considerably less viral RNA than sputum, and the virus may escape detection if only these materials are tested.'

Sensitivity of clinical samples by RT-PCR is 63% for nasal swab, 32% for pharyngeal swab, 48% for feces, 72–75% for sputum, and 93–95% for bronchoalveolar lavage.

The likelihood of detecting the virus depends on collection method and how much time has passed since infection. According to Drosten tests performed with throat swabs are reliable only in the first week. Thereafter the virus may abandon the throat and multiply in the lungs. In the second week, sputum or deep airways collection is preferred.

Collecting saliva may be as effective as nasal and throat swabs, although this is not certain. Sampling saliva may reduce the risk for health care professionals by eliminating close physical interaction. It is also more comfortable for the patient. Quarantined people can collect their own samples. A saliva test's diagnostic value depends on sample site . Some studies have found that saliva yielded greater sensitivity and consistency when compared with swab samples.

On 15 August 2020, the US FDA granted an emergency use authorization for a saliva test developed at Yale University that gives results in hours.

On 4 January 2021, the US FDA issued an alert about the risk of false results, particularly false negative results, with the Curative SARS-Cov-2 Assay real-time RT-PCR test.

Viral burden measured in upper respiratory specimens declines after symptom onset. Following recovery, many patients no longer have detectable viral RNA in upper respiratory specimens. Among those who do, RNA concentrations three days following recovery are generally below the range in which replication-competent virus has been reliably isolated. No clear correlation has been described between length of illness and duration of post-recovery shedding of viral RNA in upper respiratory specimens.

In this article, The Oregon Herald uses excerpts from Wikipedia released under the Creative Commons Attribution-Share-Alike License 3.0. and under CC-BY-SA license. This same material is granted use by anyone under the same license and the same license requirements. Any images from are licensed under the fair use and or public domain licensee.
The use of Wikipedia text or images is soley the decision and action by The Oregon Herald News. The original source of this story has nothing to do with the decision to use Wikipedia text or images.